In this research work, polymer coated magnetic nanoparticles were prepared by co-precipitation method. The samples were characterized by XRD, SEM, EDS, VSM and two probe DC conductivity measurements. XRD pattern indicated the existence of a sole cubic phase of Fe3O4 with Miller indices (2 2 0), (3 1 1), (5 1 1), (4 4 0). An average size of magnetic nanoparticles was about 22.9 nm and it was reduced to 21.3 nm and 19.4 nm after 1 wt. %. and 2 wt. % coating of PEG-6000, respectively. The morphology and size of the samples were investigated by scanning electron microscope (SEM). EDX spectra confirmed the coating of PEG on magnetic nanoparticles. Magnetic properties were examined by vibrating sample magnetometer (VSM). Saturation magnetization (M
s
) decreased as the concentration of PEG increased in the magnetic material. Electrical properties of uncoated and polymer coated Fe3O4 nanoparticles were studied by two-probe conductivity meter. This study concluded that the thermal flow of charge in polymer coated magnetic nanoparticles can be evaluated at micro and nano level.