In the hypergraph k-cut problem, the input is a hypergraph, and the goal is to find a smallest subset of hyperedges whose removal ensures that the remaining hypergraph has at least k connected components. This problem is known to be at least as hard as the densest k-subgraph problem when k is part of the input (Chekuri-Li, 2015). We present a randomized polynomial time algorithm to solve the hypergraph k-cut problem for constant k. Our algorithm solves the more general hedge k-cut problem when the subgraph induced by every hedge has a constant number of connected components. In the hedge k-cut problem, the input is a hedgegraph specified by a vertex set and a disjoint set of hedges, where each hedge is a subset of edges defined over the vertices. The goal is to find a smallest subset of hedges whose removal ensures that the number of connected components in the remaining underlying (multi-)graph is at least k. Our algorithm is based on random contractions akin to Karger's min cut algorithm. Our main technical contribution is a distribution over the hedges (hyperedges) so that random contraction of hedges (hyperedges) chosen from the distribution succeeds in returning an optimum solution with large probability.