Multifunctional living materials are attractive due to their powerful ability to self-repair and replicate. However, most natural materials lack electronic functionality. Here we show that an electric field, applied to electricity-producing
Geobacter sulfurreducens
biofilms, stimulates production of previously unknown cytochrome OmcZ nanowires with 1,000-fold higher conductivity (30 S/cm), and 3-fold higher stiffness (1.5 GPa), than the cytochrome OmcS nanowires that are important in natural environments. Using chemical imaging-based multimodal nanospectroscopy, we correlate protein structure with function, and observe pH-induced conformational switching to β-sheets in individual nanowires, which increases their stiffness and conductivity by 100-fold due to enhanced π-stacking of heme groups; this was further confirmed by computational modelling and bulk spectroscopic studies. These nanowires can transduce mechanical and chemical stimuli into electrical signals to perform sensing, synthesis and energy production. These findings of biologically-produced, highly-conductive protein nanowires may help to guide the development of seamless, bidirectional interfaces between biological and electronic systems.