2016
DOI: 10.1016/j.csda.2014.09.015
|View full text |Cite
|
Sign up to set email alerts
|

A simple and successful shrinkage method for weighting estimators of treatment effects

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 23 publications
0
4
0
Order By: Relevance
“…and equivalently for the complementary weights. Under selection on observables, there is clear evidence that weight-normalized versions of inverse probability weighting estimators generally outperform their unweighted counterparts due to a reduction in variance (Busso et al, 2014;Pohlmeier et al, 2016). We expect these results to translate to the case of selection on unobservables.…”
Section: The Balancing Estimatormentioning
confidence: 87%
“…and equivalently for the complementary weights. Under selection on observables, there is clear evidence that weight-normalized versions of inverse probability weighting estimators generally outperform their unweighted counterparts due to a reduction in variance (Busso et al, 2014;Pohlmeier et al, 2016). We expect these results to translate to the case of selection on unobservables.…”
Section: The Balancing Estimatormentioning
confidence: 87%
“…It is commonly preferred over the non-normalized inverse probability weighting (IPWI) due to its superior finite sample properties (Busso et al, 2014, Pohlmeier et al, 2016. The theory for IPWI can be constructed along the same lines.…”
Section: Inverse Probability Weightingmentioning
confidence: 99%
“…Alternative approaches that do not trim but reweigh the sample are usually based on the propensity score as well, see e.g. Frölich (2004), Pohlmeier et al (2016) and Li et al (2018).…”
Section: Introductionmentioning
confidence: 99%
“…Second, we estimate the ATT using the max trimming rule, and, third, on the untrimmed sample. Fourth, we use the shrinkage method of Pohlmeier et al (2014) on the IPW estimator by the cross-validation method.…”
Section: Robustnessmentioning
confidence: 99%