In the post-genomic era, "omics" platforms and cancer systems biology are greatly advancing our knowledge of the molecular and cellular underpinnings of cancer. In this article, we begin by outlining the factors governing the development of cancer (tumorigenesis) and use this framework to motivate the need for systems-approaches to cancer diagnostics and therapeutics. We review recent efforts to tap into the remarkable potential of nanotechnology for (i) systems-surveillance (or "sensing") of the molecular signatures of tumorigenesis, and (ii) spatiotemporally-regulated delivery (or "targeting") of combination therapeutics to cancer cells. Specifically, we highlight the salient role of polymeric biomaterials and describe the physicochemical characteristics that render them attractive for the design of such nanoscale platforms. We conclude with discussions on the emerging role of macromolecular biophysics and computational nanotechnology in engineering spatiotemporally-regulated anti-cancer systems.