This report describes the results of a Laboratory-Directed Research and Development project on techniques for pattern discovery in discrete event time series data. In this project, we explored two different aspects of the pattern matching/discovery problem. The first aspect studied was the use of Dynamic Time Warping for pattern matching in continuous data. In essence, DTW is a technique for aligning time series along the time axis to optimize the similarity measure. The second aspect studied was techniques for discovering patterns in discrete event data. We developed a pattern discovery tool based on adaptations of the A-priori and GSP (Generalized Sequential Pattern mining) algorithms. We then used the tool on three different application areas -unattended monitoring system data from a storage magazine, computer network intrusion detection, and analysis of robot training data.4