2019 27th Iranian Conference on Electrical Engineering (ICEE) 2019
DOI: 10.1109/iraniancee.2019.8786402
|View full text |Cite
|
Sign up to set email alerts
|

A Simple Distributed Adaptive Consensus Tracking Control of High Order Nonlinear Multi-Agent Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 18 publications
0
1
0
Order By: Relevance
“…To demonstrate the effectiveness of the proposed design scheme, two examples are presented. First, a dynamic system consisting of three one‐link manipulators [22, 45] is considered, and then a numerical example is given. Example 1 Let the dynamic model of each manipulator in the three one‐link manipulator system noted above be given by the following non‐linear equations [22]: right left right left right left right left right left right left0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em3ptx˙i,1=xi,2,x˙i,2=xi,3[sin(xi,1),xi,2]θi,1+Id,iDi,x˙i,3=biui[xi,2,xi,3]θi,2+sin(xi,3(tτ(t))), where τfalse(tfalse)=false(0.05+0.001sinfalse(0.1tfalse)false), right left right left right left right left right left right left0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em3ptθi,1=][NiDi,BiDinormalT,thinmathspace<...>…”
Section: Simulationsmentioning
confidence: 99%
“…To demonstrate the effectiveness of the proposed design scheme, two examples are presented. First, a dynamic system consisting of three one‐link manipulators [22, 45] is considered, and then a numerical example is given. Example 1 Let the dynamic model of each manipulator in the three one‐link manipulator system noted above be given by the following non‐linear equations [22]: right left right left right left right left right left right left0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em3ptx˙i,1=xi,2,x˙i,2=xi,3[sin(xi,1),xi,2]θi,1+Id,iDi,x˙i,3=biui[xi,2,xi,3]θi,2+sin(xi,3(tτ(t))), where τfalse(tfalse)=false(0.05+0.001sinfalse(0.1tfalse)false), right left right left right left right left right left right left0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em 2em 0.278em3ptθi,1=][NiDi,BiDinormalT,thinmathspace<...>…”
Section: Simulationsmentioning
confidence: 99%