2012
DOI: 10.1080/00927872.2011.602998
|View full text |Cite
|
Sign up to set email alerts
|

A Simple Generalization of the ElGamal Cryptosystem to Non-Abelian Groups II

Abstract: ABSTRACT. This is a study of the MOR cryptosystem using the special linear group over finite fields. The automorphism group of the special linear group is analyzed for this purpose. At our current state of knowledge, I show that this MOR cryptosystem has better security than the ElGamal cryptosystem over finite fields.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
23
0
1

Year Published

2015
2015
2022
2022

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 21 publications
(24 citation statements)
references
References 18 publications
0
23
0
1
Order By: Relevance
“…Walaupun begitu, beberapa sistem kriptografi asimetris yang dikembangkan masih dapat diretas oleh penyadap [5] [14,13]. Salah satu pengembangan pada sistem kriptografi ElGamal adalah penggunaan Non-Abelian Groups II agar sistem bekerja atas grup non-komutatif [15].…”
Section: Pendahuluanunclassified
“…Walaupun begitu, beberapa sistem kriptografi asimetris yang dikembangkan masih dapat diretas oleh penyadap [5] [14,13]. Salah satu pengembangan pada sistem kriptografi ElGamal adalah penggunaan Non-Abelian Groups II agar sistem bekerja atas grup non-komutatif [15].…”
Section: Pendahuluanunclassified
“…It provides an interesting change in perspective in public-key cryptography -from finite cyclic groups to finite non-abelian groups. The MOR cryptosystem was studied for the special linear group in details by Mahalanobis [15]. For many other classical groups, except the orthogonal groups, the analysis of a MOR cryptosystem remains almost the same.…”
Section: The Mor Cryptosystem On Unitary Groupsmentioning
confidence: 99%
“…For many other classical groups, except the orthogonal groups, the analysis of a MOR cryptosystem remains almost the same. So we will remain brief in this paper and refer an interested reader to [15] (see also [16]).…”
Section: The Mor Cryptosystem On Unitary Groupsmentioning
confidence: 99%
See 2 more Smart Citations