The relationship between users and items, which cannot be recovered by traditional techniques, can be extracted by the recommendation algorithm based on the graph convolution network. The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data. This paper presents a new approach to address such issues, utilizing the graph convolution network to extract association relations. The proposed approach mainly includes three modules: Embedding layer, forward propagation layer, and score prediction layer. The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer. The forward propagation layer designs two parallel graph convolution networks with self-connections, which extract higher-order association relevance from users and items separately by multi-layer graph convolution. Furthermore, the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion, capturing more comprehensive association relevance between users and items as input for the score prediction layer. The score prediction layer introduces MLP (multi-layer perceptron) to conduct nonlinear feature interaction between users and items, respectively. Finally, the prediction score of users to items is obtained. The recall rate and normalized discounted cumulative gain were used as evaluation indexes. The proposed approach effectively integrates higher-order information in user entries, and experimental analysis demonstrates its superiority over the existing algorithms.