Purpose
To compare prostate diffusional kurtosis imaging (DKI) metrics generated using phase‐corrected real data with those generated using magnitude data with and without noise compensation (NC).
Methods
Diffusion‐weighted images were acquired at 3T in 16 prostate cancer patients, measuring 6 b‐values (0‐1500 s/mm2), each acquired with 6 signal averages along 3 diffusion directions, with noise‐only images acquired to allow NC. In addition to conventional magnitude averaging, phase‐corrected real data were averaged in an attempt to reduce rician noise‐bias, with a range of phase‐correction low‐pass filter (LPF) sizes (8‐128 pixels) tested. Each method was also tested using simulations. Pixelwise maps of apparent diffusion (D) and apparent kurtosis (K) were calculated for magnitude data with and without NC and phase‐corrected real data. Average values were compared in tumor, normal transition zone (NTZ), and normal peripheral zone (NPZ).
Results
Simulations indicated LPF size can strongly affect K metrics, where 64‐pixel LPFs produced accurate metrics. Relative to metrics estimated from magnitude data without NC, median NC K were lower (P < 0.0001) by 6/11/8% in tumor/NPZ/NTZ, 64‐LPF real‐data K were lower (P < 0.0001) by 4/10/7%, respectively.
Conclusion
Compared with magnitude data with NC, phase‐corrected real data can produce similar K, although the choice of phase‐correction LPF should be chosen carefully.