Global precipitation products (GPPs) are vital in weather forecasting, efficient water management, and monitoring floods and droughts. However, the precision of these datasets varies considerably across different climatic regions and topographic conditions. Therefore, the accuracy assessment of the precipitation dataset is crucial at the local scale before its application. The current study initially compared the performance of recently modified and upgraded precipitation datasets, including Climate Research Unit Time-Series (CRU TS v4.08), fifth-generation ERA5-Land (ERA-5), Integrated Multi-satellite Retrievals for GPM (IMERG) final run (IMERG v07B), and Multi-Source Weighted-Ensemble Precipitation (MSWEP v2.8), against ground observations on the provincial basis across Pakistan from 2003 to 2020. Later, the study area was categorized into four regions based on the elevation to observe the impact of elevation gradients on GPPs’ skills. The monthly and seasonal precipitation estimations of each product were validated against in situ observations using statistical matrices, including the correlation coefficient (CC), root mean square error (RMSE), percent of bias (PBias), and Kling–Gupta efficiency (KGE). The results reveal that IMERG7 consistently outperformed across all the provinces, with the highest CC and lowest RMSE values. Meanwhile, the KGE (0.69) and PBias (−0.65%) elucidated, comparatively, the best performance of MSWEP2.8 in Sindh province. Additionally, all the datasets demonstrated their best agreement with the reference data toward the southern part (0–500 m elevation) of Pakistan, while their performance notably declined in the northern high-elevation glaciated mountain regions (above 3000 m elevation), with considerable overestimations. The superior performance of IMERG7 in all the elevation-based regions was also revealed in the current study. According to the monthly and seasonal scale evaluation, all the precipitation products except ERA-5 showed good precipitation estimation ability on a monthly scale, followed by the winter season, pre-monsoon season, and monsoon season, while during the post-monsoon season, all the datasets showed weak agreement with the observed data. Overall, IMERG7 exhibited comparatively superior performance, followed by MSWEP2.8 at a monthly scale, winter season, and pre-monsoon season, while MSWEP2.8 outperformed during the monsoon season. CRU TS showed a moderate association with the ground observations, whereas ERA-5 performed poorly across all the time scales. In the current scenario, this study recommends IMERG7 and MSWEP2.8 for hydrological and climate studies in this region. Additionally, this study emphasizes the need for further research and experiments to minimize bias in high-elevation regions at different time scales to make GPPs more reliable for future studies.