Optical microscopy based on waveguide chips significantly reduces the complexity of the entire optical setup, enabling miniaturization by completely removing the excitation light path from the microscope. Instead, waveguides which tightly confine the guided light by total internal reflection due to a high refractive index contrast (HIC) to the surrounding media such as water and cells are used to deliver the illumination light to the sample. The evanescent field on top of the waveguide can be utilized for total internal reflection fluorescence (TIRF) excitation over an almost arbitrarily wide FOV that is intrinsically independent of the detection objective lens and in principle only limited by the waveguide design. Evanescent field excitation using waveguides was first introduced by Grandin et al. 17 , where a slab waveguide was used to generate an evanescent field over the large stretch of the waveguide chip. Slab waveguides (Fig. 1a) Here, we demonstrate waveguide chip-based super-resolution fluorescence imaging by two complementary approaches using ESI and dSTORM. The high intensity in the evanescent field generated by the HIC waveguide material is used for optical switching of fluorophores as required by dSTORM. In addition, the intrinsically multi-mode interference pattern within the waveguide is used to generate fluctuating intensity patterns for ESI. To demonstrate the applicability of waveguide chip-based super-resolution microscopy we visualize the connection of the actin cytoskeleton and plasma membrane fenestrations in liver sinusoidal endothelial cells (LSECs).
RESULTS
Chip-based single molecule localization microscopyThe performance of chip-based dSTORM is shown by imaging immunostained microtubules in rat LSECs 26 plated directly on the waveguide (Fig. 2a). Measuring the lateral profile along one straight microtubule filament reveals a hollow structure 27 which has been used earlier in localization microscopy as a benchmark sample [28][29][30] , discussed in detail in 31 . This shows a resolution of better than 50 nm ( Fig. 2b), confirmed by full-width-at-half-maximum (FWHM) values, localization precision 32 , and Fourier ring correlation 33,34 (FRC) calculations ( Supplementary Fig. 1). The resolution capability was further investigated by using DNA origami nanorulers that provide markers at (50 ± 5) nm distance as references. These can be clearly resolved in chip-based dSTORM (Fig. 2c,d, Supplementary Fig. 2) which shows a comparable performance to the widely used architecture of an inverted TIRF dSTORM setup (Fig. 2c,d, Supplementary Fig. 3).As an advantage over conventional setups, waveguide chip-based nanoscopy greatly benefits from the fact that the fluorescence excitation is independent of the detection objective lens. As fluorescence is excited by the evanescent field of the waveguide, the technique provides optical sectioning and excellent signal to background ratios at penetration depths below 200 nm ( Supplementary Fig. 4, Supplementary Fig. 5, Video 1), similar to objective-based TIRF...