The plasma micro-chambers proposed in the literature make typically usage of relatively high RF power applied to cavities characterized by their 3D geometry, difficult to integrate on wafer. This work reports on the design, wafer-level fabrication and characterization of 20 DC plasma micro-chambers working at atmospheric pressure with noble and inert gases like helium and argon. The MEMS technology developed for this purpose allows the definition of small gaps in order to reduce the power consumption. The strike and sustain electrodes are made of Titanium Nitrite, material of choice for its hardness and thus resistance to the ion bombardment as well as his high melting point temperature, that allows the proximity and contact with high temperature plasmas. Measurements were performed, applying a high voltage to these electrodes, and measuring the relation between the voltage and the current when the plasma is ignited. Considering different gaps between the electrodes we can extract then the power consumed in the plasma and optimize the 2D micro chamber.