In this Comment, I point out that the physical origin of molecular tilt in the smectic phase, found in the Monte Carlo simulations of systems of rodlike molecules with two terminal antiparallel transverse dipole moments by Bose and Saha [Phys. Rev. E 86, 050701(R) (2012)], is similar to the one proposed by McMillan. In particular, unlike in smectic-C liquid crystals, in which the molecules are known to have practically free rotations about their long axes, the molecular rotations are found to be partially frozen in the simulations. Further, I suggest that the attractive interaction between correlated splay fluctuations of the antiparallel polarized sublayers which lie close to each other in adjacent molecular layers give rise to the tilting, rather than a reduced attractive interaction between dipoles belonging to the two dipolar sublayers within one molecular layer, as proposed by the authors.