The widespread development of driverless vehicles has led to the formation of autonomous racing competitions, where the high speeds and fierce rivalry in motorsport provide a testbed to accelerate technology development. A particular challenge for an autonomous vehicle is that of identifying a target trajectory -or in the case of a racing car, the ideal racing line. Many existing approaches to identifying the racing line are either not the time-optimal solutions, or have solution times which are computationally expensive, thus rendering them unsuitable for real-time application using on-board processing hardware. This paper describes a machine learning approach to generating an accurate prediction of the racing line in real-time on desktop processing hardware. The proposed algorithm is a dense feed-forward neural network, trained using a dataset comprising racing lines for a large number of circuits calculated via a traditional optimal control lap time simulation. The network is capable of predicting the racing line with a mean absolute error of ±0.27m, meaning that the accuracy outperforms a human driver, and is comparable to other parts of the autonomous vehicle control system. The system generates predictions within 33ms, making it over 9,000 times faster than traditional methods of finding the optimal racing line. Results suggest that a data-driven approach may therefore be favourable for real-time generation of nearoptimal racing lines than traditional computational methods.