Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: The coronavirus disease 2019 (COVID-19) pandemic has found the whole world unprepared for its correct management. Italy was the first European country to experience the spread of the SARS-CoV-2 virus at the end of February 2020. As a result of hospital overcrowding, the quality of care delivered was not always optimal. A substantial number of patients admitted to non-ICU units could have been treated at home. It would have been extremely useful to have a score that, based on personal and clinical characteristics and simple blood tests, could have predicted with sufficient reliability the probability that a patient had or did not have a disease that could have led to their death. This study aims to develop a scoring system to identify which patients with COVID-19 are at high mortality risk upon hospital admission, to expedite and enhance clinical decision making. Methods: A retrospective analysis was performed to develop a multivariable prognostic prediction model. Results: Derivation and external validation cohorts were obtained from two Italian University Hospital databases, including 388 (10.31% deceased) and 1357 (7.68% deceased) patients with confirmed COVID-19, respectively. A multivariable logistic model was used to select seven variables associated with in-hospital death (age, baseline oxygen saturation, hemoglobin value, white blood cell count, percentage of neutrophils, platelet count, and creatinine value). Calibration and discrimination were satisfactory with a cumulative AUC for prediction mortality of 0.924 (95% CI: 0.893–0.944) in derivation cohorts and 0.808 (95% CI: 0.886–0.828) in external validation cohorts. The risk score obtained was compared with the ISARIC 4C Mortality Score, and with all the other most important scores considered so far, to evaluate the risk of death of patients with COVID-19. It performed better than all the above scores to evaluate the predictability of dying. Its sensitivity, specificity, and AUC were higher than the other COVID-19 scoring systems when the latter were calculated for the 388 patients in our derivation cohort. Conclusions: In conclusion, the CZ-COVID-19 Score may help all physicians by identifying those COVID-19 patients who require more attention to provide better therapeutic regimens or, on the contrary, by identifying those patients for whom hospitalization is not necessary and who could therefore be sent home without overcrowding healthcare facilities. We developed and validated a new risk score based on seven variables for upon-hospital admission of COVID-19 patients. It is very simple to calculate and performs better than all the other similar scores to evaluate the predictability of dying.
Background: The coronavirus disease 2019 (COVID-19) pandemic has found the whole world unprepared for its correct management. Italy was the first European country to experience the spread of the SARS-CoV-2 virus at the end of February 2020. As a result of hospital overcrowding, the quality of care delivered was not always optimal. A substantial number of patients admitted to non-ICU units could have been treated at home. It would have been extremely useful to have a score that, based on personal and clinical characteristics and simple blood tests, could have predicted with sufficient reliability the probability that a patient had or did not have a disease that could have led to their death. This study aims to develop a scoring system to identify which patients with COVID-19 are at high mortality risk upon hospital admission, to expedite and enhance clinical decision making. Methods: A retrospective analysis was performed to develop a multivariable prognostic prediction model. Results: Derivation and external validation cohorts were obtained from two Italian University Hospital databases, including 388 (10.31% deceased) and 1357 (7.68% deceased) patients with confirmed COVID-19, respectively. A multivariable logistic model was used to select seven variables associated with in-hospital death (age, baseline oxygen saturation, hemoglobin value, white blood cell count, percentage of neutrophils, platelet count, and creatinine value). Calibration and discrimination were satisfactory with a cumulative AUC for prediction mortality of 0.924 (95% CI: 0.893–0.944) in derivation cohorts and 0.808 (95% CI: 0.886–0.828) in external validation cohorts. The risk score obtained was compared with the ISARIC 4C Mortality Score, and with all the other most important scores considered so far, to evaluate the risk of death of patients with COVID-19. It performed better than all the above scores to evaluate the predictability of dying. Its sensitivity, specificity, and AUC were higher than the other COVID-19 scoring systems when the latter were calculated for the 388 patients in our derivation cohort. Conclusions: In conclusion, the CZ-COVID-19 Score may help all physicians by identifying those COVID-19 patients who require more attention to provide better therapeutic regimens or, on the contrary, by identifying those patients for whom hospitalization is not necessary and who could therefore be sent home without overcrowding healthcare facilities. We developed and validated a new risk score based on seven variables for upon-hospital admission of COVID-19 patients. It is very simple to calculate and performs better than all the other similar scores to evaluate the predictability of dying.
Background: Identifying high-risk COVID-19 patients is critical for emergency department decision-making. Our study’s primary objective was to identify new independent predictors of mortality and their predictive utility in combination with traditional pneumonia risk assessment scores and new risk scores for COVID-19 developed during the pandemic. Methods: A retrospective study was performed in two Italian University Hospitals. A multivariable logistic model was used to locate independent parameters associated with mortality. Results: Age, PaO2/FiO2, and SpO2/FiO2 ratios were found to be independent parameters associated with mortality. This study found that the Pneumonia Severity Index (PSI) was superior to many of the risk scores developed during the pandemic, for example, the International Severe Acute Respiratory Infection Consortium Coronavirus Clinical Characterisation Consortium (ISARIC 4C) (AUC 0.845 vs. 0.687, p < 0.001), and to many of the risk scores already in use, for example, the National Early Warning Score 2 (NEWS2) (AUC 0.845 vs. 0.589, p < 0.001). Furthermore, our study found that the Pneumonia Severity Index had a similar performance to other risk scores, such as CRB-65 (AUC 0.845 vs. 0.823, p = 0.294). Combining the PaO2/FiO2 or SpO2/FiO2 ratios with the risk scores analyzed improved the prognostic accuracy. Conclusions: Adding the SpO2/FiO2 ratio to the traditional, validated, and already internationally known pre-pandemic prognostic scores seems to be a valid and rapid alternative to the need for developing new prognostic scores. Future research should focus on integrating these markers into existing pneumonia scores to improve their prognostic accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.