One important goal of the climate commitment in the European Union (EU) is to reduce primary energy demand in the transport sector and increase the use of renewables, since around 33% of primary energy is consumed in this sector. Therefore, the EU ordered its member states to raise the number of electric vehicles (EVs) within Europe. Consequently, the energy demand for electricity will rise as a function of the number of EVs. To avoid local grid overload and guarantee a higher percentage of clean energy, EV charging stations can be supported by a combined system of grid-connected photovoltaic modules and battery storage. In this paper, the focus lies on the feasibility and economic aspects of such systems. To provide an overview of the different e-charging station combinations, a support tool was modelled and developed, making it possible to size and manage EVs charging stations with only a few input parameters. Thanks to its easy handling, the tool suits a wide spectrum of users. Due to enhanced optional settings, this tool is suitable for detailed input parameters for professionals as well. Input categories are basically divided into the photovoltaic (PV) system, battery storage, the charging station itself, and investment analysis. The tool supports decisions for solar charging stations designed for different parking locations like offices, schools, and public and private places.