1978
DOI: 10.1016/0045-7949(78)90020-2
|View full text |Cite
|
Sign up to set email alerts
|

A simple quadrilateral shell element

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
89
0
3

Year Published

1996
1996
2017
2017

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 318 publications
(92 citation statements)
references
References 5 publications
0
89
0
3
Order By: Relevance
“…An effective method to avoid transverse shear locking is based on assumed shear strain fields first proposed in Ref. [11], and subsequently extended among others in References [12,13,14]. The variational basis for these methods is given with the Hu-Washizu functional.…”
Section: Introductionmentioning
confidence: 99%
“…An effective method to avoid transverse shear locking is based on assumed shear strain fields first proposed in Ref. [11], and subsequently extended among others in References [12,13,14]. The variational basis for these methods is given with the Hu-Washizu functional.…”
Section: Introductionmentioning
confidence: 99%
“…La sous intégration est généralement réservée à la partie élastique afin d'éliminer le problème de vérouillage en cisaillement introduit par l'utilisation de fonctions d'interpolation N i linéaires, qui sont responsables d'une énergie de cisaillement artificiellement élevée [84]. L'utilisation de la sous intégration est ici étendue à la partie cinématique venant de la rotation et uniquement pour θ.…”
Section: (B) Vibrations Non Linéairesunclassified
“…(8), B is an interpolation matrix obtained by imposing the considered set of shape functions and J is the determinant of the Jacobian matrix. Geometric stiffness (Martin, 1966;Marcal, 1969;MacNeal, 1978) is the first order approximation of geometrically nonlinear behavior and it is particularly useful in the linearizing buckling problem. The terms in the geometric stiffness matrix for an element are linear functions of the components of stress in the element.…”
Section: Stiffness Geometric Stiffness and Mass Matrixmentioning
confidence: 99%