2022
DOI: 10.21203/rs.3.rs-1215051/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Simple Scoring Model Based on Machine Learning Predicts Intravenous Immunoglobulin Resistance in Kawasaki Disease

Abstract: In Kawasaki disease (KD), accurate prediction of intravenous immunoglobulin (IVIG) resistance is crucial to reduce a risk for developing coronary artery lesions. To establish a simple and accurate scoring model predicting IVIG resistance, we conducted a retrospective cohort study of 996 KD patients that were diagnosed at 11 facilities for 10 years, in which 108 cases (23.5%) were resistant to initial IVIG treatment. We performed machine learning with random forest model using 30 clinical variables at diagnosis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?