LTA zeolite is used both in industry as well as in laboratories, because of its spatial-specific structure which is useful in gas adsorption and in ion exchange separation. At-line reaction monitoring and multivariate analysis of data, such as Principal Component Analysis (PCA), are fundamentals of the Process Analytical Technology (PAT), which consists of the use of analyzers with rapid detection and low sample preparation for analysis during the process stream. In this work, an optimization of zeolite LTA synthesis was performed aiming to obtain nanocrystals and the synthesis was monitored using Raman spectroscopy and PCA. A reaction mixture of 6.2Na2O : Al2O3 : 2SiO2 : 128H2O was used and it was possible to obtain a small particle size and high crystallinity after 72 h of synthesis at 25 °C. The synthesis was monitored at-line, using Raman spectroscopy in both liquid and solid phases. The extension of the reaction could be clearly observed by the PCA scores. As expected, the liquid phase presented changes over time, but the solid phase presented three specific stationary conditions at 0-24 h, 32-56 h and 72-80, related to the beginning of the reaction, the nucleation process, and the crystal formation, respectively. In addition, it was possible to identify the intermediates of the reaction and with the aid of PCA to monitor the reaction close to the real time.