Mosquitoes (Aedes aegypti) were genetically modified to exhibit impaired vector competence for dengue type 2 viruses (DENV-2). We exploited the natural antiviral RNA interference (RNAi) pathway in the mosquito midgut by constructing an effector gene that expresses an inverted-repeat (IR) RNA derived from the premembrane protein coding region of the DENV-2 RNA genome. The A. aegypti carboxypeptidase A promoter was used to express the IR RNA in midgut epithelial cells after ingestion of a bloodmeal. The promoter and effector gene were inserted into the genome of a white-eye Puerto Rico Rexville D (Higgs' white eye) strain by using the nonautonomous mariner MosI transformation system. A transgenic family, Carb77, expressed IR RNA in the midgut after a bloodmeal. Carb77 mosquitoes ingesting an artificial bloodmeal containing DENV-2 exhibited marked reduction of viral envelope antigen in midguts and salivary glands after infection. DENV-2 titration of individual mosquitoes showed that most Carb77 mosquitoes poorly supported virus replication. Transmission in vitro of virus from the Carb77 line was significantly diminished when compared to control mosquitoes. The presence of DENV-2-derived siRNAs in RNA extracts from midguts of Carb77 and the loss of the resistance phenotype when the RNAi pathway was interrupted proved that DENV-2 resistance was caused by a RNAi response. Engineering of transgenic A. aegypti that show a high level of resistance against DENV-2 provides a powerful tool for developing population replacement strategies to control transmission of dengue viruses.RNA silencing ͉ transgenesis ͉ genetic control ͉ mosquito ͉ dengue disease D engue viruses (DENV) [Flaviviridae; Flavivirus; DENV types 1-4 (DENV-1-4)] threaten public health in Ͼ100 countries and infect an estimated 50 million people annually (1, 2). The mosquito, Aedes aegypti, is the principal vector for epidemic dengue disease (3). The urban DENV transmission cycle involves only humans and mosquitoes. No DENV vaccines are currently available, and vector control strategies that minimize human-mosquito contact have largely failed (4, 5). New control strategies are needed. One possible strategy is to replace vector populations competent to transmit DENVs with pathogenincompetent vectors (6). The essential features of this genetic control strategy are to identify genes that express antiviral molecules in the vector, link this gene (or genes) to a genetic drive system [transposable elements (TE), meiotic drive, or homing endonuclease genes] and introgress the gene(s) into field populations (7-9). A key step in developing this control strategy is to identify effector genes that, when expressed in the vector, inhibit DENV replication. Proof of principle for RNA interference (RNAi)-like disruption of DENV-2 vector competence was previously demonstrated by using a nonheritable alphavirus expression system (10). Applying the principle of heritable gene silencing in transgenic Drosophila melanogaster, Caenorhabditis elegans, and A. aegypti (11-13), we gene...