2009
DOI: 10.1590/s0103-97332009000500016
|View full text |Cite
|
Sign up to set email alerts
|

A simple way to avoid metastable configurations in the density-matrix renormalization-group algorithms

Abstract: We use the spin-1 Heisenberg chain with periodic boundary conditions to ilustrate that the systems get stuck in metastable configurations only when the density-matrix renormalization-group algorithm start with small number of states m. We also show that the convergence of the energies have a huge improvement if we start the algorithm with a large number of states m. Keywords: spin model, DMRG, The density-matrix renormalization-group [1, 2] (DMRG) is one of the most appropriate techniques to study static prope… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2010
2010
2014
2014

Publication Types

Select...
2
2

Relationship

3
1

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 19 publications
0
2
0
2
Order By: Relevance
“…In order to avoid metastable configurations we start the truncation process with large values of m (typically we start with m 0 ∼ 1200) [36].…”
Section: Introductionmentioning
confidence: 99%
“…In order to avoid metastable configurations we start the truncation process with large values of m (typically we start with m 0 ∼ 1200) [36].…”
Section: Introductionmentioning
confidence: 99%
“…In order to avoid metastable configurations we start the truncation process with large values of m (typically we start with m 0 ∼ 1200). 36 In the next section we present our results for the spin-S N -leg Heisenberg ladders: estimates of the ground state energy per site (e N ∞ ) as well the estimates of the spin gap (∆ s ) in the thermodynamic limit. We also show estimates of the ground state energy per site of the twodimensional spin-S Heisenberg model.…”
Section: Ref 27mentioning
confidence: 99%
“…O peso descartado nas varreduras finais foi tipicamente 10-8 -10-12. Para evitar configurações metaestáveis, iniciamos o processo de truncamento com valores grandes de m (tipicamente iniciamos com mo ~ 1200) [127].…”
Section: Com a Decomposição Deunclassified
“…É importante ressaltar que consideramos aqui que uma iteração é composta pelo conjunto da primeira e da segunda parte da varredura. O número de estados retidos é aumentado progressivamente a cada iteração,11 veja por exemplo a referência [127]. A seguir apresentaremos um algoritmo do DMRG para sistema finito.…”
Section: A2 Algoritmo Finitounclassified