The coupled fractional dual phase-lag hygrothermoelasticity theory, developed using fractional calculus principles, extends classical Fourier’s and Fick’s laws to a time-fractional differential equation. The concept is applied to a thin circular plate that is exposed to hygrothermal loadings. The finite integral transform method and decoupled technique are utilized to create closed-form expressions for various factors such as temperature, moisture, large deflection, and stresses. The study compares the results of the dual phase-lag model with those of classical and hyperbolic models. The phase-lags parameters play a crucial role in regulating the heat and moisture transfer mechanism