Deposition from a suspended phase onto a surface can aversely affect everyday transport processes on a variety of scales, from mineral scale corrosion of household plumbing systems to asphaltene deposition in large-scale pipelines in the petroleum industry. While petroleum may be a single fluid phase under reservoir conditions, depressurization upon production often induces a phase transition in the fluid, resulting in the precipitation of asphaltene material which readily aggregates to the colloidal scale and deposits on metallic surfaces. Colloidal asphaltene deposition in wellbores and pipelines can be especially problematic for industrial purposes, where cleanup processes necessitate costly operational shutdowns. In order to better understand the parametric dependence of deposition which leads to flow blockages, we carry out lab-scale experiments under a variety of material and flow conditions. We develop a parametric scaling model to understand the fluid dynamics and transport considerations governing deposition. The lab-scale experiments are performed by injecting precipitating petroleum fluid mixtures into a small metal pipe, which results in deposition and clogging, assessed by measuring the pressure drop across the pipe. Parametric scaling arguments suggest that the clogging behavior is determined by a combination of the Peclet number, volume fraction of depositing material, and the volume of the injection itself. C 2015 AIP Publishing LLC.