The aim of this study is to investigate the mechanical behavior of a fluoro-polymer elastomer in the −8 to 100 • C temperature range. Several cyclic tension and compression tests and multi-step relaxation tests were performed in order to determine the effects of the temperature on the behavior of the material. The Hyperelasto-Visco-Hysteresis (HVH) phenomenological model was used to account for the thermo-mechanical properties of this material. In this model, which was implemented in the in-house Herezh++ code, three sets of branches stand for different modes of characteristic behavior: the hyperelasticity contribution stands for the reversible elastic phase which occurs at the onset of the loading, the viscosity contribution models the strain rate dependent phase and the hysteresis contribution stands for the irreversible plastic phase. Temperature-dependent parameters were determined using a simplified method based on tension and compression tests interrupted by relaxation steps. The model was found to accurately describe the stress-strain evolution of the elastomer investigated under various mechanical loading conditions at various temperatures.