This paper presents a comprehensive stability analysis of the boundary‐based hybrid control (BBHC) algorithm designed for boost converter. The stability assessment is carried out utilizing multiple Lyapunov functions, addressing both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) operation. The boost converter is modeled as a hybrid automaton to capture its dynamic behavior accurately. Through rigorous Lyapunov stability analysis, this study demonstrates the effectiveness of the BBHC algorithm in ensuring stable operation of the boost converter across various operating modes. Additionally, the proposed control algorithm's validation is conducted using the FPGA‐in‐the‐loop (FIL) technique, highlighting its efficiency and robustness in real‐world applications. This research contributes valuable insights into the design and implementation of stable control strategies for boost converter, emphasizing the practical utility of the BBHC algorithm with FIL for enhanced performance and reliability in power electronics systems.