Alternative fuels have proven to be an effective means of reducing the environmental impact of road transportation. On the other hand, the increasing use of air conditioning has declined the fuel economy of passenger vehicles. Half-cycle air conditioning systems (HCACSs) can address this concern of the declining fuel economy by using the fuel as a refrigerant. One of the candidates to be considered as refrigerants in HCACSs is liquefied petroleum gas (LPG). Under various conditions, LPG in the liquid state is injected into the evaporator of an HCACS. At the end of the evaporation process, LPG vapors can be directed for the combustion taking place in devices such as generators, automobiles, and cooking stoves. The present study investigates the performance of three in-housed manufactured evaporators having staggered and/or aligned tube arrangements with variable tube sizes, numbers of fins, fin spacings, and fin materials. As a refrigerant, LPG, having 65% propane and 35% butane, was passed through three evaporators. The energy efficiency ratios (EERs) were indirectly measured for evaporative pressures of 132, 168, and 201 kPa, with mass flow rates of 0.6, 0.75, and 0.9 g/s, respectively, when the fan speed interacting with the evaporators was varied. The results revealed that the aligned configuration with the same tube and fin material performed better even at low fan speeds.