Following significant advances in lymphatic biology, the important role of kidney lymphatics in kidney function and dysfunction is now being more fully appreciated. Kidney lymphatics begin in the cortex as blind-ended lymphatic capillaries and then coalesce into larger lymphatics that follow the main blood vessels out through the kidney hilum. Their function in draining interstitial fluid, macromolecules, and cells underpins their important role in kidney fluid and immune homeostasis. This article provides a comprehensive overview of recent and more established research findings on kidney lymphatics and the implications of these findings for kidney function and disease. The use of lymphatic molecular markers has greatly expanded our knowledge of the development, anatomy, and pathophysiology of kidney lymphatics. Significant recent discoveries include the diverse embryological source of kidney lymphatics, the hybrid nature of the ascending vasa recta, and the effects of lymphangiogenesis on kidney diseases such as acute kidney injury and renal fibrosis. On the basis of these recent advances, there is now an opportunity to link information from across multiple research disciplines to drive a new era of lymphatic-targeted therapies for kidney disease.