Bifidobacterium, one of the major components of intestinal microflora, shows anti-influenza virus (IFV) potential as a probiotic, partly through enhancement of innate immunity by modulation of the intestinal immune system. Bifidobacterium longum MM-2 (MM-2), a very safe bacterium in humans, was isolated from healthy humans and its protective effect against IFV infection in a murine model shown. In mice that were intranasally inoculated with IFV, oral administration of MM-2 for 17 consecutive days improved clinical symptoms, reduced mortality, suppressed inflammation in the lower respiratory tract, and decreased virus titers, cell death, and proinflammatory cytokines such as IL-6 and TNF-a in bronchoalveolar lavage fluid. The anti-IFV mechanism of MM-2 involves innate immunity through significant increases in NK cell activities in the lungs and spleen and a significant increase in pulmonary gene expression of NK cell activators such as IFN-g, IL-2, IL-12 and IL-18. Even in non-infected mice, MM-2 administration also induced significant enhancement of both IFN-g production by Peyer's patch cells (PPs) and splenetic NK cell activity. Oral administration of MM-2 for 17 days activates systemic immunoreactivity in PPs, which contributes to innate immunity, including NK cell activation, resulting in an anti-IFV effect. MM-2 as a probiotic may function as a prophylactic agent in the management of an IFV epidemic.