Aberrant secretion of lysosomal hydrolases such as (pro)cathepsin D (proCD) is a common phenotypic change in many human cancers. Here we explore the underlying molecular defect(s) and find that MCF-7 breast and CaCo-2 colorectal cancer cells that are unable to acidify their endosomal compartments secreted higher amounts of proCD than did acidification-competent cancer cell types. The latter secreted equivalent amounts of proCD only after dissipation of their organellar pH gradients with NH 4 Cl. Assessing the critical steps that resulted in proCD secretion revealed that the Golgi-associated sorting receptor for CD, i.e. the cationindependent mannose-6-phosphate receptor (MPR300), was aberrantly distributed in acidification-defective MCF-7 cells. It accumulated mainly in late endosomes and/or lysosomes as a complex with its ligand (proCD or intermediate CD), as evidenced by its co-localization with both CD and LAMP-2, a late endosome/lysosome marker. Our immunoprecipitation analyses also showed that MCF-7 cells possessed 7-fold higher levels of receptor-enzyme complexes than did acidification-competent cells. NH 4 Cl induced similar receptor redistribution into LAMP-2-positive structures in acidification-competent cells but not in MCF-7 cells. The receptor also recovered its normal Golgi localization upon drug removal. Based on these observations, we conclude that defective acidification results in the aberrant secretion of proCD in certain cancer cells and interferes mainly with the normal disassembly of the receptor-enzyme complexes and efficient receptor reutilization in the Golgi.