Although the utilization of [70]fullerene bis-adducts can enhance the power conversion efficiencies of polymer solar cells (PSCs) owing to their strong absorption intensities and high-lying lowest unoccupied molecular orbital energy levels, this synthetic strategy typically yields a mixture of regioisomers that would mask the intrinsic device performances depending on the substituent pattern on the [70]fullerene derivatives. In this study, a single cis-2 regioisomer of C70 bis-adduct (cis-2-[70]BIEC) has been prepared for the first time by the same strategy that had been applied to [60]fullerene to obtain a regioisomerically pure C60 bis-adduct (cis-2-[60]BIEC). Diels-Alder reaction was conducted between a rationally designed ethylene-tethered indene dimer and [70]fullerene, followed by isolation using high-performance liquid chromatography suitable for the separation of fullerene derivatives. A series of structural analysis techniques including NMR spectroscopies and X-ray crystallography were used to identify the absolute configuration of the bis-adduct. A systematic study on the optical, electrochemical, and photovoltaic properties of cis-2-[70]BIEC as well as the corresponding regioisomer mixture (bis-[70]BIEC) and the monoadduct (α-mono-[70]BIEC) has been performed to examine the effect of the pure cis-2 regioisomer. More importantly, their properties are compared with those of cis-2-[60]BIEC to address the effect of fullerene cage structures, that is, C60 versus C70. The PSC based on cis-2-[70]BIEC and poly(3-hexylthiophene) showed a remarkable power conversion efficiency of 4.2%, which is higher than those with bis-[70]BIEC (2.2%), α-mono-[70]BIEC (2.2%), cis-2-[60]BIEC (2.8%), and even a prevalent high-performance C70 monoadduct ([70]PCBM, 3.8%). Our synthetic strategy will pave the way for further development on the rational design and isolation of single fullerene bis-adduct regioisomers exhibiting high device performances.