Metal species with
different size (single atoms, nanoclusters,
and nanoparticles) show different catalytic behavior for various heterogeneous
catalytic reactions. It has been shown in the literature that many
factors including the particle size, shape, chemical composition,
metal–support interaction, and metal–reactant/solvent
interaction can have significant influences on the catalytic properties
of metal catalysts. The recent developments of well-controlled synthesis
methodologies and advanced characterization tools allow one to correlate
the relationships at the molecular level. In this Review, the electronic
and geometric structures of single atoms, nanoclusters, and nanoparticles
will be discussed. Furthermore, we will summarize the catalytic applications
of single atoms, nanoclusters, and nanoparticles for different types
of reactions, including CO oxidation, selective oxidation, selective
hydrogenation, organic reactions, electrocatalytic, and photocatalytic
reactions. We will compare the results obtained from different systems
and try to give a picture on how different types of metal species
work in different reactions and give perspectives on the future directions
toward better understanding of the catalytic behavior of different
metal entities (single atoms, nanoclusters, and nanoparticles) in
a unifying manner.