“…This is of both functional and biological significance, since data emanating from the use of antibodies with different epitopes within PrP have yielded significant advancements in prion biology relating to: diagnostic regimes for animal TSE disease (using 6H4 [22], [24], [51], [52] or human TSEs (using KG9 singly or in combination with other antibodies i.e. 3F4, ICMS35, BG4 [53]–[56]); immunological characterisation of pathology associated with established and emerging TSEs, such as immunophenotyping of atypical scrapie using an array of antibodies [2] or identification of the shared characteristic of Nor98 scrapie and human Gerstmann-Straussler-Scheinker disease (GSS) [6]; the use of sequences in the prion protein which are species specific (using 3F4 or antisera raised against synthetic peptides [14], [25], [57]); the discrimination of TSE strains in large and small animal models, for example natural scrapie, BSE and CH1641 scrapie (using P4 and 66.94ba [58], 6H4/P4 [59], P4 [60]), using triplex immunostaining with L42, 12B2 and SAF84 [61] and using multiple antibody panels [5], [41], [62]–[67]; the characterisation and classification of human prion disease [68]–[71]; the characterisation of structural elements within PrP, such as deciphering accessibility and exposure of epitopes following the conversion of PrP C to PrP Sc or those that are PrP Sc -specific i.e.…”