“…In XFEM/GFEM, a level set technique with enrichment functions is used to represent the crack in the domain, hence avoiding the requirement of remeshing during the crack propagation. This method has since been extended for interfacial crack (Sukumar et al, 2004;Pathak et al, 2013a;Kumar et al, 2015b;Hu et al, 2016), fatigue crack growth (Combescure et al, 2005;Singh et al, 2012;Pathak et al, 2015b;Hara et al, 2016a;Pant and Bhattacharya, 2017), elasto-plastic crack growth (Elguedj et al, 2006;Kumar et al, 2014;Kumar et al, 2015c;Kumar et al, 2016), three dimensional crack growth (Areias and Belytschko, 2005;Rabczuk et al, 2010;Pathak et al, 2013b, Pathak et al, 2013c, dynamic crack growth (Zi et al, 2005;Réthoré et al, 2005;Kumar et al, 2015d) fatigue crack growth in functionally graded materials (Singh et al, 2011;Bhattacharya and Sharma, 2014) and interaction of multiple cracks (Hara et al, 2016b). Despite its success in many types of problems, there exist some limitations: (1) it introduces an error during the mapping of discontinuities from the physical space to the natural space (Fries and Belytschko, 2010); (2) the implementation in FEM can be complicated as blending elements are generally required for connecting the enriched elements to standard elements; (3) the numerical solution is sensitive to the numerical integration scheme used for the enriched elements (Rabczuk, 2013); and (4) different enrichment functions are usually required to tackle different material problems.…”