Shale gas accounts for an increasing proportion in the world's oil and gas supply, with the properties of low carbon, clean production, and huge potential for the compensation for the gradually depleted conventional resources. Due to the ubiquitous nanopores in shale matrix, the nanoscale gas flow becomes one of the most vital themes that are directly related to the formulation of shale gas development schemes, including the optimization of hydraulic fracturing, horizontal well spacing, etc. With regard to the gas flow in shale matrix, no commonly accepted consensus has been reached about the flow mechanisms to be considered, the coupled flow model in nanopores, and the upscaling method for its macroscopic form. In this chapter, the propositions of wall-associated diffusion, a physically sound flow mechanism scheme, a new coupled flow model in nanopores, the upscaling form of the proposed model, and the translation of lab-scale results into field-scale ones aim to solve the aforementioned issues. It is expected that this work will contribute to a deeper understanding of the intrinsic relationship among various flow mechanisms and the extension of the flow model to full flow regimes and to upscaling shale matrix, thus establishing a unified model for better guiding shale gas development.