A battery management system (BMS) plays an important role in electric vehicles (EVs) in order to achieve a reasonable-lasting lifetime. An equalizing method is essential in order to obtain the best performance. A monitoring system is required to check if any cell voltage is high or low. In this paper, an equalizing and monitoring system for an ultra-light electric vehicle is proposed. The monitoring system detects if one cell is fully charged or all cells are fully charged and the equalizing system tops each cell at the desired voltage. To solve this issue, a light-emitting diode (LED) band gap is used as a voltage reference to inform the user if any cell is at its high voltage. A smart monitoring displays on the liquid crystal display (LCD), if one cell is high or all cells are high. This detection also provides a signal to the microcontroller to turn on/off the charger if all cells are high. Also, a Bluetooth module was designed to command the microcontroller the charger to turn on/off via voice/text message by using a smartphone. Additionally, a new smart monitoring system based on the Bluetooth model (HC05) and mobile app has been made in order to monitor individual cell voltage. A major feature of the system is to draw a very-low current, so that the system does not contribute significantly to the self-discharge of the battery and the circuit does not need sophisticated control. Manufacturers of large electric vehicles may have more intelligent systems that may require a permanent connection to the grid and allow high standby losses, where more state of charge (SOC) may be lost per day. The paper is rather focused on reducing the standby losses, and to activate the equalizer only when charging and/or driving. The experimental results are performed in order to verify the feasibility of the proposed circuit.