This work is a unique integration of three different areas, including smart eye status monitoring, supply chain operations reference (SCOR), and system dynamics, to explore the dynamics of the supply chain network of smart eye/vision monitoring systems. Chronic eye diseases such as glaucoma affect millions of individuals worldwide and, if left untreated, can lead to irreversible vision loss. Nearly half of the affected population is unaware of the condition and can be informed with frequent, accessible eye/vision tests. Tonometry is the conventional clinical method used in healthcare settings to determine the intraocular pressure (IOP) level for evaluating the risk of glaucoma. There are currently very few (under development) non-contact and non-invasive methods using smartphones to determine the risk of IOP and/or the existence of other eye-related diseases conveniently at home. With the overall goal of improving health, well-being, and sustainability, this paper proposes Eye-SCOR: a supply chain operations reference (SCOR)-based framework to evaluate the effectiveness of smartphone-based eye status monitoring apps. The proposed framework is designed using system dynamics modeling as a subset of a new causal model. The model includes interaction/activities between the main players and enablers in the supply chain network, namely suppliers/service providers, smartphone app/device factors, customers, and healthcare professionals, as well as cash and information flow. The model has been tested under various scenarios and settings. Simulation results reveal the dynamics of the model and show that improving the eye status monitoring device/app factors directly increases the efficiency/Eye-SCOR level. The proposed framework serves as an important step towards understanding and improving the overall performance of the supply chain network of smart eye/vision monitoring systems.