Aiming at the deficiency of magnetic field utilization rate and the mass-torque ratio of magnetorheological fluid brake (MR brake), a novel MRB is proposed in this paper. Initially, a squeeze-shear mode MR brake with multi-fluid flow channels (S-MRB) is designed and its structure and working principle are described. Based on the analysis of the magnetic circuit, mathematical models are established to describe the rotary torque of the S-MRB. Furthermore, COMSOL software is carried out to model and simulate the electromagnetic field of the S-MRB, which verified the rationality of structure design. Then, with the braking torque and mass of the S-MRB as objective function, multi-objective optimization algorithm is adopted to optimize the structural parameters of the S-MRB. The optimization results show that the braking torque is increased by 25.34% and the mass of the MRB is decreased by 2.7%. Finally, a MRB braking performance test platform is established, and the effectiveness and superiority of the S-MRB are verified by braking torque dynamic response characteristic experiments.