2022
DOI: 10.1155/2022/2551137
|View full text |Cite
|
Sign up to set email alerts
|

A Smoothed Matrix Multivariate Elliptical Distribution-Based Projection Method for Feature Extraction

Abstract: Big data has the traits such as “the curse of dimensionality,” high storage cost, and heavy computation burden. Self-representation-based feature extraction methods cannot effectively deal with the image-level structural noise in the data, so how to character a better relationship of reconstruction representation is very important. Recently, sparse representation with smoothed matrix multivariate elliptical distribution (SMED) using structural information to handle low-rank error images caused by illumination … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 35 publications
0
0
0
Order By: Relevance