1983
DOI: 10.13031/2013.34062
|View full text |Cite
|
Sign up to set email alerts
|

A Soil-Tool Model Based on Limit Equilibrium Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
37
0
1

Year Published

1999
1999
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 72 publications
(39 citation statements)
references
References 7 publications
1
37
0
1
Order By: Relevance
“…The methods of Coulomb [2] and Perumpral [3,4] assume that the material in front of the blade fails and moves as a rigid body. The sum of all forces acting on this rigid body can be used to solve for the forces acting on the blade.…”
Section: Methodsmentioning
confidence: 99%
“…The methods of Coulomb [2] and Perumpral [3,4] assume that the material in front of the blade fails and moves as a rigid body. The sum of all forces acting on this rigid body can be used to solve for the forces acting on the blade.…”
Section: Methodsmentioning
confidence: 99%
“…8. This has been done by Perumpral et al [23] for 3D systems and for a tool inclined at an angle β to the horizontal and with an angle of friction δ and for the Coulomb failure criterion with cohesion. This model assumes that the deformation is localized on a plane passing through the bottom of the tool and making an angle ρ with the horizontal.…”
mentioning
confidence: 99%
“…8. Geometry of the mobilized domain considered by Perumpral et al according to [23] where h 1 and h 2 have the same meanings as in Fig. 6.…”
mentioning
confidence: 99%
“…Deve-se lembrar, então, que a equação apresentada foi obtida com o escarificador, trabalhando com três hastes. Várias referências demonstram que a variação da força de tração, em função da profundidade de trabalho, é representada por uma expressão quadrática (Kiss & Bellow, 1981;Perumpral et al, 1983 e American Society of Agricultural Engineer, 1990). O coeficiente quadrático da expressão obtida para a força de tração na barra é pequeno, da ordem de 0,1; no entanto, significativo a nível de 0,01 de probabilidade.…”
Section: Resultsunclassified