In recent years, the research interest in off-grid (standalone mode) and hybrid (capable of both standalone and grid-connected modes) charging systems for electric vehicles (EVs) has increased. The main reason is to provide a seamless charging infrastructure in urban and rural areas where the electrical grid is unreliable or unavailable so that EV adoption can be increased worldwide. In this regard, this article reviews the state-of-the-art architectures of the off-grid and hybrid charging systems and investigates their various subsystems, such as single or multiple energy sources, power electronics converters, energy storage systems, and energy management strategies. These subsystems should be optimally integrated and operated to achieve low-cost and efficient EV charging. Moreover, each subsystem is explored in detail to find the current status and technology trends. Furthermore, EV charging connectors, their power level, and standards for all kinds of EVs (ranging from one-wheeler to four-wheelers) are reviewed, and suggestions are discussed related to the non-standardization of charging plugs. Finally, conclusions show the continuous efforts of the researchers in improving the systems in various aspects, such as cost reduction, performance improvement, longevity, negative environmental effect, system size minimization, and efficient operation, and highlight challenges for both charging systems. Biomass, EV charging, off-grid, grid-connected, solar, and wind.
INDEX TERMS