Abstract. Asporin (ASPN), a novel member of the small leucine-rich proteoglycan (SLRP) family, serves as a key component of the tumor stroma and has been reported to be abnormally expressed in certain types of tumors. Specifically, the proteoglycan was proven to activate the coordinated invasion of scirrhous gastric cancer and cancer-associated fibroblasts. However, the role of ASPN in cancer cell growth and metastasis has not yet been addressed. In the present study, we aimed to evaluate the tumoricidal benefits of ASPN on tumorigenesis and progression of gastric cancer. Firstly, it was demonstrated that ASPN was overexpressed in gastric carcinoma tissues when compared to the corresponding non-cancerous tissues, and it had varied levels of expression in gastric cancer epithelial cell lines. Additionally, we assessed the effects of transient siRNA-mediated ASPN knockdown on gastric cancer cells. ASPN silencing inhibited proliferation and suppressed the migration of immortalized neoplastic epithelial cells. Furthermore, at the molecular level, we found that downregulation of ASPN blocked the anti-apoptotic molecule Bcl-2, increased the expression of pro-apoptotic molecule Bad, reduced the expression of migration-related proteins CD44 and matrix metalloproteinase (MMP)-2, and abrogated the activation of the phosphorylation status of ERK and epidermal growth factor (EGF) and its receptor (EGFR). Collectively, our findings indicate that ASPN is upregulated and plays an oncogenic role in gastric cancer progression and metastasis by influencing the EGFR signaling pathway.