Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Mejillones Bay is located in northern Chile (23°S) and is influenced by an Oxygen Minimum Zone (OMZ), with oxygen levels below 0.5 ml l–1. This area presents particular ecological characteristics, such as circulation of currents, hotspot, high productivity and industrial activity. This extreme ecosystem generates the need to understand their dynamics and changes across time and space, as well as to identify the main differences with other OMZs. For this reason, we studied the benthic foraminifera to use them as environmental and oxygenation proxies. For this purpose, two sediment cores (ZA and Z1A) were collected, obtaining 14 samples of the first 8 cm (vertical distribution), and 18 samples with a mini boxcore (spatial distribution). When analyzing the foraminifera community, some similarities were found in environmental characteristics of other OMZs, such as the predominance of Bolivina seminuda, Bolivina costata, Epistominella exigua, Fursenkoina sp., and Nonioella stella (species typical of hypoxic conditions). In addition, a high abundance of angular-asymmetric morphologies was observed, indicating eutrophied silty substrates and low current circulation. However, the Mejillones Bay recorded a particular spatial and vertical dynamics respect to others OMZs, due to presence of other species of Bolivinids not reported for this area before, and a high abundance of Buliminella elegantissima, which is not recorded in most of OMZs. Foraminifera with rounded-symmetric morphologies were present and dominant in deeper layers, reflecting a turbulent and high-energy environment. On the basis of depth and conditions of microxia or dysoxia, no significative pattern of spatial and vertical distribution was observed. The latter can be explained by local factors such as cyclonic and anticyclonic whirlpools, wastewater from industrial activity and natural disaster such a Tsunami occurred in 1877. These factors contributed to the mixture of the benthic foraminifera and prevented the formation of spatial and vertical patterns. Finally, an intensification of hypoxia was identified, indicating microxia (0,01 ml l–1) in the superficial layers (0–3 cm from years 1996 to 2012), while the deeper layers (4–8 cm from years 1985 to 1877) presented foraminiferal species that indicated dysoxia conditions (0,07 ml l–1). The latter differs from other OMZs, which show greater oxygenation in the most superficial layers and microxia in deeper layers. This study represents the first ecological reconstruction using benthic foraminifera proxies for the Mejillones Bay, which results indicate an OMZ with ecological and environmental features that differ from other OMZs.
Mejillones Bay is located in northern Chile (23°S) and is influenced by an Oxygen Minimum Zone (OMZ), with oxygen levels below 0.5 ml l–1. This area presents particular ecological characteristics, such as circulation of currents, hotspot, high productivity and industrial activity. This extreme ecosystem generates the need to understand their dynamics and changes across time and space, as well as to identify the main differences with other OMZs. For this reason, we studied the benthic foraminifera to use them as environmental and oxygenation proxies. For this purpose, two sediment cores (ZA and Z1A) were collected, obtaining 14 samples of the first 8 cm (vertical distribution), and 18 samples with a mini boxcore (spatial distribution). When analyzing the foraminifera community, some similarities were found in environmental characteristics of other OMZs, such as the predominance of Bolivina seminuda, Bolivina costata, Epistominella exigua, Fursenkoina sp., and Nonioella stella (species typical of hypoxic conditions). In addition, a high abundance of angular-asymmetric morphologies was observed, indicating eutrophied silty substrates and low current circulation. However, the Mejillones Bay recorded a particular spatial and vertical dynamics respect to others OMZs, due to presence of other species of Bolivinids not reported for this area before, and a high abundance of Buliminella elegantissima, which is not recorded in most of OMZs. Foraminifera with rounded-symmetric morphologies were present and dominant in deeper layers, reflecting a turbulent and high-energy environment. On the basis of depth and conditions of microxia or dysoxia, no significative pattern of spatial and vertical distribution was observed. The latter can be explained by local factors such as cyclonic and anticyclonic whirlpools, wastewater from industrial activity and natural disaster such a Tsunami occurred in 1877. These factors contributed to the mixture of the benthic foraminifera and prevented the formation of spatial and vertical patterns. Finally, an intensification of hypoxia was identified, indicating microxia (0,01 ml l–1) in the superficial layers (0–3 cm from years 1996 to 2012), while the deeper layers (4–8 cm from years 1985 to 1877) presented foraminiferal species that indicated dysoxia conditions (0,07 ml l–1). The latter differs from other OMZs, which show greater oxygenation in the most superficial layers and microxia in deeper layers. This study represents the first ecological reconstruction using benthic foraminifera proxies for the Mejillones Bay, which results indicate an OMZ with ecological and environmental features that differ from other OMZs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.