Weather radar data play an important role in meteorological analysis and forecasting. In particular, web‐based real‐time 3D visualization will enable and enhance various meteorological applications by avoiding the dissemination of a large amount of data over the internet. Despite that, most existing studies are either limited to 2D or small‐scale data analytics due to methodological limitations. This article proposes a new framework to enable web‐based real‐time 3D visualization of large‐scale weather radar data using 3D tiles and WebGIS technology. The 3D tiles technology is an open specification for online streaming massive heterogeneous 3D geospatial datasets, which is designed to improve rendering performance and reduce memory consumption. First, the weather radar data from multiple single‐radar sites across a large coverage area are organized into a spliced grid data (i.e., weather radar composing data, WRCD). Next, the WRCD is converted into a widely used 3D tile data structure in four steps: data preprocessing, data indexing, data transformation, and 3D tile generation. Last, to validate the feasibility of the proposed strategy, a prototype, namely Meteo3D at https://202.195.237.252:82, is implemented to accommodate the WRCD collected from all the weather radar sites over the whole of China. The results show that near real‐time and accurate visualization for the monitoring and early warning of strong convective weather can be achieved.