2022
DOI: 10.1016/j.dsp.2021.103369
|View full text |Cite
|
Sign up to set email alerts
|

A special coprime array configuration for increased degrees of freedom

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2025
2025

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 26 publications
0
2
0
Order By: Relevance
“…The steering vector corresponding to the k ‐th source signal is bold-italica)(θkbadbreak=1,ej2πλu2dsin)(θk,,ej2πλuidsin)(θkT,$$\begin{equation} \bm {a}{\left(\theta _{k}\right)}={\left[1, e^{-j \frac{2 \pi }{\lambda } u_{2} d \sin {\left(\theta _{k}\right)}}, \ldots , e^{-j \frac{2 \pi }{\lambda } u_{i} d \sin {\left(\theta _{k}\right)}}\right]}^{T}, \end{equation}$$where uid,i{2,3,,M+N1}$u_i d,i \in \lbrace 2,3,\ldots ,M+N-1\rbrace$ represents the position of the i ‐th sensor in the relative prime array. For the T samples, the time average function can be calculated by [13–15], Rx1xi(τ)badbreak=k=1Ka1(θ)kaifalse(θfalse)k·][1Tt=1Tsk(t)sk(t+τ)goodbreak+Rn1ni(τ),$$\begin{equation} R_{x_1^* x_i } (\tau ) = \sum \limits _{k = 1}^K {a_1^* (\theta )_k a_i (} \theta )_k \cdot \left[{ {1 \over T}}\sum \limits _{t = 1}^T {s_k^* (t)s_k (t + \tau )} \right] + R_{n_1^* n_i } (\tau ), \end{equation}$$where τ is the time lag, T is the number of snapshots. When T is sufficiently large, (5) can be written as Rx1…”
Section: Signal Modelmentioning
confidence: 99%
See 1 more Smart Citation
“…The steering vector corresponding to the k ‐th source signal is bold-italica)(θkbadbreak=1,ej2πλu2dsin)(θk,,ej2πλuidsin)(θkT,$$\begin{equation} \bm {a}{\left(\theta _{k}\right)}={\left[1, e^{-j \frac{2 \pi }{\lambda } u_{2} d \sin {\left(\theta _{k}\right)}}, \ldots , e^{-j \frac{2 \pi }{\lambda } u_{i} d \sin {\left(\theta _{k}\right)}}\right]}^{T}, \end{equation}$$where uid,i{2,3,,M+N1}$u_i d,i \in \lbrace 2,3,\ldots ,M+N-1\rbrace$ represents the position of the i ‐th sensor in the relative prime array. For the T samples, the time average function can be calculated by [13–15], Rx1xi(τ)badbreak=k=1Ka1(θ)kaifalse(θfalse)k·][1Tt=1Tsk(t)sk(t+τ)goodbreak+Rn1ni(τ),$$\begin{equation} R_{x_1^* x_i } (\tau ) = \sum \limits _{k = 1}^K {a_1^* (\theta )_k a_i (} \theta )_k \cdot \left[{ {1 \over T}}\sum \limits _{t = 1}^T {s_k^* (t)s_k (t + \tau )} \right] + R_{n_1^* n_i } (\tau ), \end{equation}$$where τ is the time lag, T is the number of snapshots. When T is sufficiently large, (5) can be written as Rx1…”
Section: Signal Modelmentioning
confidence: 99%
“…, M + N − 1} represents the position of the i-th sensor in the relative prime array. For the T samples, the time average function can be calculated by [13][14][15],…”
Section: Introductionmentioning
confidence: 99%