Within the environmental context, numerical modeling is a promising approach to assess the energy efficiency of building. Resilient buildings need to be designed, capable of adapting to future extreme heat. Simulations are required assuming a one-dimensional heat transfer problem through walls and a simulation horizon of several years (nearly 30). The computational cost associated with such modeling is quite significant and model reduction methods are worth investigating. The objective is to propose a reliable reduced-order model for such long-term simulations. For this, an alternative model reduction approach is investigated, assuming a known Proper Orthogonal Decomposition reduced basis for time, and not for space as usually. The model enables computing parametric solutions using basis interpolation on the tangent space of the Grassmann manifold. Three study cases are considered to verify the efficiency of the reduced-order model. Results highlight that the model has a satisfying accuracy of 10 −3 compared to reference solutions. The last case study focuses on the wall energy efficiency design under climate change according to a four-dimensional parameter space. The latter is composed of the load material emissivity, heat capacity, thermal conductivity and thickness insulation layer. Simulations are carried over 30 years considering climate change. The solution minimizing the wall work rate is determined with a computational ratio of 0.1% compared to standard approaches.