In source–detector problems, neutron leakage is a quantity of interest that could lead to improve shielding structures, thus reducing the dose received by humans. In this work, we apply an adjoint technique with spectral nodal methods to compute neutron leakage in multigroup one– and two–dimensional problems in the discrete ordinates (SN) formulation. The use of the adjoint technique to calculate the leakages due to various source distributions is very convenient as it is possible to run adjoint problems and store the neutron importance maps. Here we solve the homogeneous adjoint SN transport equation by considering unit outgoing adjoint flux at the boundary. In order to numerically solve slab– and X, Y–geometry problems, we use spectral nodal methods that have been widely applied and discussed in the literature. Numerical results are given to illustrate the present adjoint technique to estimate the neutron leakage for each energy group in source–detector problems. For all the test problems, the results obtained by the adjoint technique as described in this paper do agree with the results obtained by solving the analogous forward problem.