Microquasars are neutron star or black hole X-ray binaries with jets. These jets can create shock-ionized bubbles of hot plasma that can masquerade as peculiar supernova remnants (SNRs) in extragalactic surveys. To see if this is the case in the well-studied spiral galaxy M 83, where one microquasar candidate (M 83-MQ1) has already been identified, we studied the properties of nine SNR candidates, selected because of their elongated or irregular morphology, from the set of previously identified SNRs in that galaxy. Using multiwavelength data from Chandra, the Hubble Space Telescope, Gemini, and the Australia Telescope Compact Array, we found that at least six of our nine sources are best interpreted as SNRs. For one source, we do not have enough observational data to explain its linear morphology. Another source shows a nebular optical spectrum dominated by photo-ionization by O stars, but its excess [Fe II] and radio luminosity suggest a possible hidden SNR. Finally, one source (S2) shows an elongated structure of ionized gas, two radio sources along that line, and an accretion-powered X-ray source in between them (the Chandra source L14-139). While S2 could be a chance alignment of multiple SNRs and one X-ray binary, it seems more likely that it is a single physical structure powered by the jet from the accreting compact object. In the latter case, the size and luminosity of S2 suggest a kinetic power of ∼10 40 erg s −1 , in the same class as the most powerful microquasars in the local universe (e.g., S26 in NGC 7793 and SS 433 in our own Galaxy).