This publication provides a brief overview of the results of recent research works by the author in the field of power electronics, carried out and published mainly in 2019–2021, and awarded with the Premium “Boris Lazarenko” of the Academy of Sciences of Moldova in the field of engineering. The methodological basis of those investigations is an original alternative method of the synchronous multi-zone space-vector modulation of signals of voltage source inverters as the main workhorses of adjustable speed electric drives and renewable energy systems. Therefore, basic strategies, schemes, and algorithms of synchronous multi-zone modulation have been further developed, modernized, modified, and disseminated for the control of novel promising topologies of power conversion systems for variable speed drives and for photovoltaic installations. It is shown that the developed schemes and algorithms of the synchronous space-vector modulation applied for control of inverter-based systems provide continuous synchronization and symmetry of the basic voltage waveforms of systems during the whole control range. It provides minimization of even harmonics and undesirable subharmonics (of the fundamental frequency) in spectra of the basic voltages of systems, leading to reducing the losses in the systems and to increasing their efficiency. Based on a comparative analysis of the integral spectral characteristics of the phase voltage of the systems, recommendations are formulated for the rational choice of schemes and algorithms of the synchronous space-vector modulation for the relevant installations, depending on the modes of their operation.