Differential equations are commonplace in engineering, and lots of research have been carried out in developing methods, both efficient and precise, for their numerical solution. Nowadays the numerical practitioner can rely on a wide range of tools for solving differential equations: finite difference methods, finite element methods, meshless, and so on. Wavelets, since their appearance in the early 1990s, have attracted attention for their multiresolution nature that allows them to act as a "mathematical zoom," a characteristic that promises to describe efficiently the functions involved in the differential equation, especially in the presence of singularities. The objective of this chapter is to introduce the main concepts of wavelets and differential equation, allowing the reader to apply wavelets to the solution of differential equations and in numerical operator calculus.